

DiaSino® 250H Vitamin D total

One-step ELISA test for the in-vitro determination of 25-hydroxyvitamin D total

Vitamin D testing

Indication

Vitamin D is a fat-soluble steroid hormone precursor that is mainly produced in the skin by exposure to sunlight. Vitamin D is biologically inert and must undergo hydroxylation steps to become active.¹Our body can only synthesize vitamin D3. Vitamin D2 is taken up with fortified food or given by supplements. Physiologically, vitamin D3 and D2 are bound to the vitamin D-binding protein (VDBP) in plasma and transported to the liver to become 25-hydroxyvitamin D (vitamin D (25-OH)). As vitamin D (25-OH) represents the major storage form, its blood concentration is used to assess the overall vitamin D status. More than 95 % of vitamin D (25-OH), measurable in serum, is vitamin D3 (25-OH) whereas vitamin D2 (25-OH) reaches measurable levels only in patients taking vitamin D2 supplements.^{12,3} Vitamin D is essential for bone health. In children, severe deficiency leads to rickets. In elderly, the risk of falling has been attributed to vitamin D deficiency due to muscle weakness. Moreover, low vitamin D (25-OH) concentrations are associated with lower bone mineral density. Insufficiency has also been linked to diabetes, cancer, cardiovascular disease, and autoimmune diseases.¹ The DiaSino 25-OH Vitamin D is intended for the quantitative determination of vitamin D (25-OH) in human serum, plasma, tissue homogenates and other biological fluids, as an aid in the assessment of vitamin D sufficiency.

Determining Vitamin D status

The measurement of the 250H Vitamin D concentration in serum or plasma is so far the best indicator of Vitamin D nutritional status. It is generally accepted that serum 250H Vitamin D levels reflect the body's storage levels of Vitamin D and correlate with the clinical symptoms of Vitamin D deficiency. There is no consensus about the optimal 250H Vitamin D level, but many publications suggest a range ≥30 ng/mL (>80nmol/L) as optimal. The most widely used intervals are indicated in table 1. Several population studies have identified widespread 250H Vitamin D insufficiency (> 40% of the population) in apparent healthy populations. Paediatric reference intervals have not been established, but the American Association for Paediatrics (AAP) recommends a value of 20 ng/mL for healthy children.

Table 1: Suggested reference values for adults

Vitamin D status	250H Vitamin D total (ng/mL)
Deficient	<10
Insufficient	10-29
Sufficient	30-100
Potential Toxicity	>100

DiaSino® Assay protocol: Probably the most convenient 250H Vitamin D total ELISA on the market

DiaSino® 250H Vitamin D total test characteristics

Testing time	85 minutes
Test principle	One-step competition method
Calibrators	0, 7.5, 15, 30, 75, 150 ng/mL
Sample material	Serum
Sample volume	50 μL
Detection limit	2.0 ng/mL
Measuring range	2.0- 150 ng/mL
Traceability	Standardized against Roche Elecsys® 250H Vitamin D total
Expected values	Most experts agree that vitamin D deficiency should be defined as vitamin D (25-OH) of \leq 20 ng/mL. Vitamin D insufficiency is recognized as 21-29 ng/mL. The preferred level for vitamin D (25-OH) is recommended to be \geq 30 ng/mL. ^{4,5}

Precision

Precision was determined using DiaSino Vitamin D total reagents, pooled human sera, and controls in a modified protocol (EP5-A) of the CLSI (Clinical and Laboratory Standards Institute): 2 times daily for 20 days (n = 40). The following results were obtained below:

	-	Repeatability (Within-run precision)		Intermediate Precision	
Sample	Mean ng/mL	SD ng/mL	CV %	SD ng/mL	CV %
Human Serum 1	8.2	0.6096	7.4	0.6972	8.5
Human Serum 2	21.4	1.3268	6.2	1.5432	7.2
Human Serum 3	33.5	2.0544	6.1	1.9754	5.9
PC Universial 1	13.3	0.9773	7.3	0.9877	7.4
PC Universial 2	30.1	1.4050	4.7	1.8523	6.2

Method comparison

A comparison of the DiaSino® Vitamin D total assay (y) with the Roche Elecsys® Vitamin D (x) using clinical samples gave the following correlations: Number of samples measured: 52

DiaSino® offers Vitamin D total, Intact PTH and Osteocalcin ELISA kits, which are used for diagnosis and monitoring of osteoporosis. To learn more, visit <u>http://www.diasino.com/immunodiagnostics</u>

DiaSino bone marker panel and ordering information

Reference No.	Diagnostic assay	Testing time	Measuring range	Detection limit
DS167701	Vitamin D total	85 min	2.0-150 ng/mL	2.0 ng/mL
DS167702	Intact PTH	45 min	1.0-3500 pg/mL	1.0 pg/mL
DS167703	Osteocalcin	45 min	0.500-300 ng/mL	0.500 ng/mL

Thyroid	Anemia	TORCH
TSH	Vitamin B12	TOXO lgG
Т3	Folate (FA)	CMV IgG
T4	Ferritin	Rubella IgG
Free T3		HSV-1 IgG
Free T4	Bone	HSV-2 IgG
Anti-Tg	250H Vitamin D total	TOXO IgM
Anti-TPO	Intact PTH	CMV IgM
	Osteocalcin	Rubella IgM
Fertility	β-CrossLaps*	HSV-1 IgM
AMH	P1NP*	HSV-2 IgM
Inhibin A		
Inhibin B	Infection	Tumor
β-hCG	HAV IgM	AFP
LH	HBsAg	CEA
FSH	Anti-HCV	PSA
PRL	HIV1/2	Free PSA
Progesterone	HIV Ag/Ab	
Testosterone	Syphilis TP	Autoimmune
E2	HEV IgM	ds-DNA
DHEA-S*	H.Pylori IgA*	ANA
SHBG*	H.Pylori IgG*	Anti-Tg
17-OH Progesterone*	H.Pylori IgM*	Anti-TPO

* In development

References

- 1. Holick, M.F. (2007). Vitamin D de ciency. N Engl J Med, 357:266-281.
- 2. Houghton, L.A., Vieth, R. (2006). The case against ergocalciferol (vitamin D2) as a vitamin supplement. Am J Clin Nutr, 84:694-697.
- 3. Hart, G.R., Furniss, J.L., Laurie, D., et al. (2006). Measurement of vitamin D Status: background, clinical use and methodologies. Clin Lab, 52(7-8):335-343.
- 4. Holick, M.F. (2009). Vitamin D status: measurement, interpretation, and clinical application. Ann Epidemiol. 19(2):73-8.
- 5. Souberbielle, J.C., Body, J.J., Lappe, J.M., Plebani, M., et al. (2010). Vitamin D and musculoskeletal health, cardiovascular disease, autoimmunity and cancer: Recommendations for clinical practice. Autoimmun Rev. 9(11):709-15.

DIASINO and DiaSino are used, pending and/or registered trademarks belonging to DiaSino, or one of its subsidiaries or one of its companies. Any other trademark is the property of its respective owner. / DiaSino Laboratories Co., Ltd./ Printed in China, 12-2019.

diasino

DiaSino Headquarters

DiaSino Laboratories Co., Ltd. No.68 Jingnansi Road National Eco & Tech Development Area 450000 Zhengzhou, China Phone: +86 371 5569 5727 www.diasino.com

